Modeling Node Exposure for Community Detection in Networks

نویسندگان

چکیده

In community detection, datasets often suffer a sampling bias for which nodes would normally have high affinity appear to zero affinity. This happens example when two affine users of social network were not exposed one another. Community detection on this kind data suffers then from considering as affine. To solve problem, we explicitly model the (non-) exposure mechanism in Bayesian framework, by introducing set additional hidden variables. Compared approaches do exposure, our method is able better reconstruct input graph, while maintaining similar performance recovering communities. Importantly, it allows estimate probability that been exposed, possibility available with standard models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community Detection in Networks with Node Features

Many methods have been proposed for community detection in networks, but most of them do not take into account additional information on the nodes that is often available in practice. In this paper, we propose a new joint community detection criterion that uses both the network edge information and the node features to detect community structures. One advantage our method has over existing join...

متن کامل

Utilizes the Community Detection for Increase Trust using Multiplex Networks

Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...

متن کامل

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

Improving community detection in networks by targeted node removal.

How a network breaks up into subnetworks or communities is of wide interest. Here we show that vertices connected to many other vertices across a network can disturb the community structures of otherwise ordered networks, introducing noise. We investigate strategies to identify and remove noisy vertices ("violators") and develop a quantitative approach using statistical breakpoints to identify ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studies in computational intelligence

سال: 2023

ISSN: ['1860-949X', '1860-9503']

DOI: https://doi.org/10.1007/978-3-031-21131-7_18